QIC 710: Introduction to Quantum Information Processing

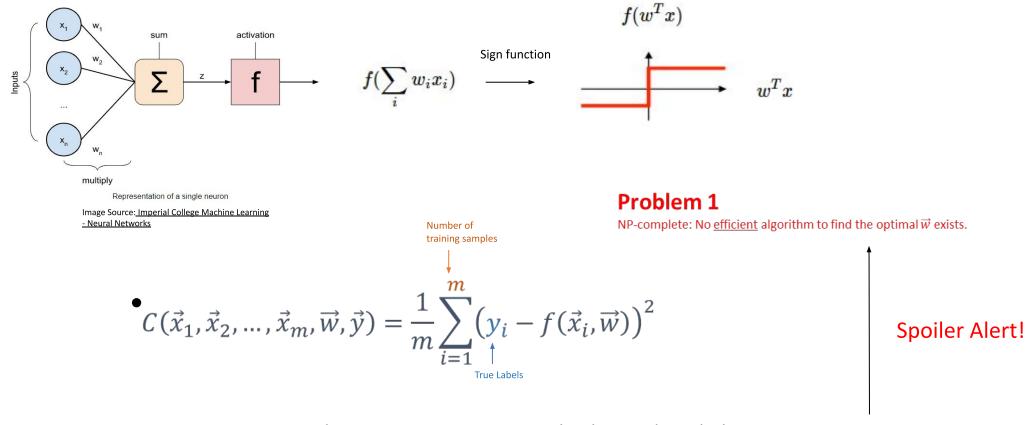
Instructor: Professor Richard Cleve

Prepared by: **Asad Raza**, Exchange Student at the Faculty of Mathematics, University of Waterloo.

Quantum speed-up in global optimization of binary neural nets (arXiv: 1810.12948)

- Refresher on Classical Neural Networks and their training
 - Quantum Binary Neural Networks
 - Quantum Advantage in Training

Classical Neuron

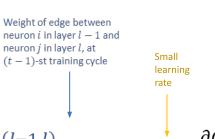


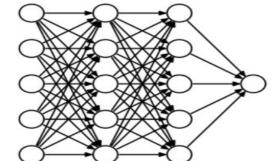
Goal: Find the *optimal* \vec{w}^* such that the cost, $C(\vec{x}_1, \vec{x}_2, ..., \vec{x}_m, \vec{w}, \vec{y})$, is the lowest

Training Classical Neural Networks Using Gradient Descent

Problem 3

Gradient descent does not guarantee global convergence for non-convex functions





$$f(z) = f(\sum_i w_i x_i) = f(w^T x)$$

convex functions
$$w_{ij}^{(l-1,l)}(t) = w_{ij}^{(l-1,l)}(t-1) - \eta \frac{\partial C}{\partial w_{ij}^{(l-1,l)}}$$

But how to calculate $\frac{\partial C}{\partial w_{ij}^{(l-1,l)}}$?

$$\frac{\partial C}{\partial w_{ij}^{(L-1,L)}} = \frac{\partial C}{\partial f(z_j^{(L)})} \frac{\partial f(z_j^{(L)})}{\partial w_{ij}^{(L-1,L)}} = \frac{\partial C}{\partial f(z_j^{(L)})} \frac{\partial f(z_j^{(L)})}{\partial z_j^{(L)}} \frac{\partial z_j^{(L)}}{\partial w_{ij}^{(L-1,L)}}$$

Problem 2

Negligible $w_{ij}^{(l-1,l)}(t)$ updates

No learning

The derivatives for most activation functions range between 0 and 1, which are multiplied L-1 times to compute

$$\frac{\partial C}{\partial w_{ij}^{(L-1,L)}}$$

$$\frac{\partial C}{\partial w_{ij}^{(l-1,l)}} \approx 0$$

Quantum Binary Neuron

Encode the weights, the inputs and the activations take values either +1 or -1. Dramatic Simplification (?)

Not as bad as it sounds. See Bengio et al. (arXiv: 1602.02830)

Scheme: Represent -1 as $|1\rangle$ and 1 as $|0\rangle$

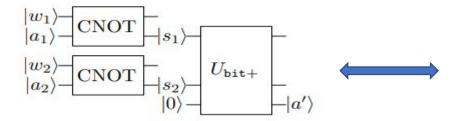


Figure 5. Functioning of QBN: the input data is encoded into quantum states. The multiplication succeeds by the CNOT gate and outputs the states $|s_1\rangle$, $|s_2\rangle$. Finally, the Toffoli gate, which has known decompositions into elementary gates, executes $U_{\text{bit+}}$, leading to the output state $|a'\rangle$.

$$V(|w_{1}\rangle_{1}|a_{1}\rangle_{2}|w_{2}\rangle_{3}|a_{2}\rangle_{4}|0\rangle_{5})$$

$$=|w_{1}\rangle_{1}|s_{1}\rangle_{2}|w_{2}\rangle_{3}|s_{2}\rangle_{4}|a'\rangle_{5}$$
Generalize to Quantum
Binary Feedforward
Neural Network (QBFNN)

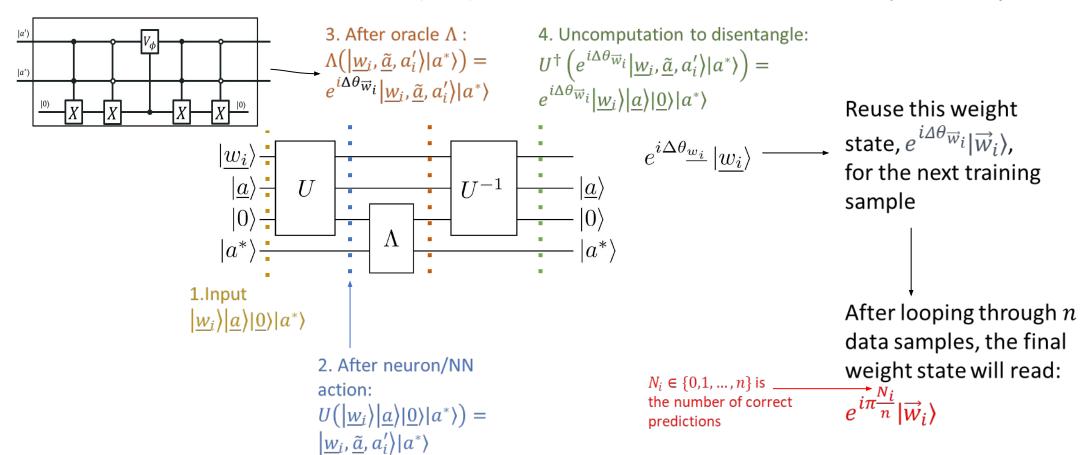
All network weights
$$V(|a_{1}\rangle|a_{2}\rangle...|a_{n}\rangle|w_{1}\rangle|w_{2}\rangle...|w_{N}\rangle|0\rangle^{\otimes p})$$

$$=|\widetilde{a_{1}},\widetilde{a_{2}},...,\widetilde{a_{n}},w_{1},w_{2},...,w_{N}, \text{rest}, a'_{1},a'_{2},...,a'_{k}\rangle$$

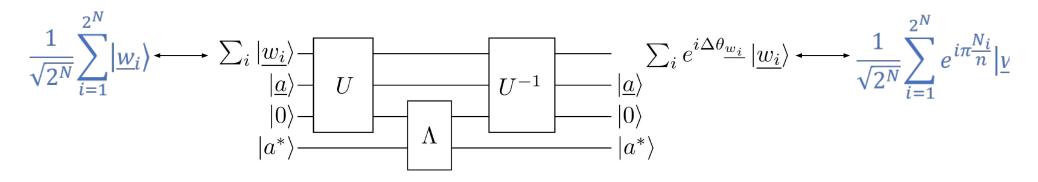
Saved values to achieve unitarity

Training QBFNN: Single Weight Configuration

Pick one pair of training data and call it (\vec{a}, a^*) , and one possible weight configuration \vec{w}_i (out of 2^N)



Training QBFNN: Superposition of Weights



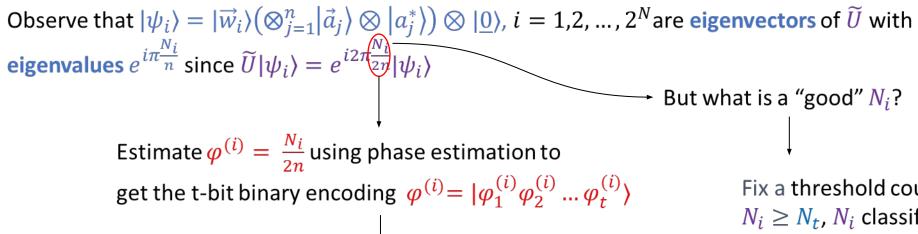
ONE loop instead of 2^N loops for each weight configuration

Since we loop through all the n training samples coherently, we can represent n rounds of $U^{\dagger}\Lambda U$ as one gigantic unitary $\widetilde{\pmb{U}}$

$$\left(\frac{1}{\sqrt{2^N}} \sum_{i=1}^{2^N} |\vec{w}_i\rangle \right) \otimes |\vec{a}_1\rangle |\vec{a}_2\rangle \dots |\vec{a}_n\rangle |0\rangle^{\otimes p} |a_1^*\rangle |a_2^*\rangle \dots |a_n^*\rangle$$

$$\stackrel{\tilde{U}}{\to} \left(\frac{1}{\sqrt{2^N}} \sum_{i=1}^{2^N} e^{i\pi \frac{N_i}{n}} |\vec{w}_i\rangle \right) \otimes |\vec{a}_1\rangle |\vec{a}_2\rangle \dots |\vec{a}_n\rangle |0\rangle^{\otimes p} |a_1^*\rangle |a_2^*\rangle \dots |a_n^*\rangle$$

Phase Estimation



Since phase estimation works for a superposition of eigenvectors, $\sum_{i} |\vec{w}_{i}\rangle \otimes \left(\bigotimes_{j=1}^{n} |\vec{a}_{j}\rangle \otimes |a_{j}^{*}\rangle \right) \otimes |0\rangle \otimes |0\rangle^{\otimes t}$ $\stackrel{PE}{\to} \sum_{i} |\vec{w}_{i}\rangle \otimes \left| \varphi_{1}^{(i)} \varphi_{2}^{(i)} \dots \varphi_{t}^{(i)} \right) \left(\bigotimes_{j=1}^{n} |\vec{a}_{j}\rangle \otimes |a_{j}^{*}\rangle \right) \otimes |0\rangle$

Fix a threshold count $N_t \in \mathbb{N}^+$. If $N_i \ge N_t$, N_i classifies as a "good enough" configuration.

Getting the "quality" weight vector

Define another **oracle** $O_{\pm 1}$, which acts on $\left| \varphi_1^{(i)} \varphi_2^{(i)} \dots \varphi_t^{(i)} \right\rangle$ as follows:

$$O_{\pm 1} \left| \varphi_1^{(i)} \varphi_2^{(i)} \dots \varphi_t^{(i)} \right\rangle = \begin{cases} -\left| \varphi_1^{(i)} \varphi_2^{(i)} \dots \varphi_t^{(i)} \right\rangle, & \text{if } N_i \geq N_t \\ \left| \varphi_1^{(i)} \varphi_2^{(i)} \dots \varphi_t^{(i)} \right\rangle, & \text{if } N_i < N_t \end{cases}$$

Started off with $\sum_{i} |\vec{w}_{i}\rangle \otimes \left(\bigotimes_{j=1}^{n} |\vec{a}_{j}\rangle \otimes |a_{j}^{*}\rangle \right) \otimes |0\rangle \otimes |0\rangle^{\otimes t}$

$$\stackrel{PE}{\to} \sum_{i} |\vec{w}_{i}\rangle \otimes \left| \varphi_{1}^{(i)} \varphi_{2}^{(i)} \dots \varphi_{t}^{(i)} \right\rangle \left(\bigotimes_{j=1}^{n} |\vec{a}_{j}\rangle \otimes \left| a_{j}^{*} \right\rangle \right) \otimes |0\rangle$$

$$\xrightarrow{O_{\pm 1}} \sum_{i} (-1)^{N_{i} \ge N_{t}} |\vec{w}_{i}\rangle \otimes \left| \varphi_{1}^{(i)} \varphi_{2}^{(i)} \dots \varphi_{t}^{(i)} \right\rangle \left(\bigotimes_{j=1}^{n} |\vec{a}_{j}\rangle \otimes \left| a_{j}^{*} \right\rangle \right) \otimes |0\rangle \xrightarrow{PE^{-1}} \left(\sum_{i} (-1)^{N_{i} \ge N_{t}} |\vec{w}_{i}\rangle \right) \left(\bigotimes_{j=1}^{n} |\vec{a}_{j}\rangle \otimes \left| a_{j}^{*} \right\rangle \right) \otimes |0\rangle \otimes |0\rangle$$

Problem: Entanglement between weights and phases! Solution: PE^{\dagger}

Uncompute phase estimation!

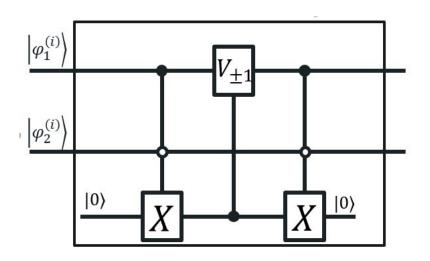
 $|\widehat{W}\rangle = \frac{1}{\sqrt{2^N}} \sum_{i} (-1)^{N_i \ge N_t} |\underline{w}_i\rangle$

Applying Grover's to find the "good" weights

Example: n = 2

$$N_t = n \to \frac{N_i}{2n} = \frac{1}{2}$$

 $\varphi^{(i)} = \frac{N_i}{2n'}$, the encoding $|\varphi_1^{(i)}\varphi_2^{(i)}\rangle$ will be correspondingly $|10\rangle$



After
$$PE^{\dagger}$$
, we had the weight superposition $|\widehat{W}\rangle = \frac{1}{\sqrt{2^N}} \sum_i (-1)^{N_i \ge N_t} |\underline{w}_i\rangle$

A Grover state!

The Grover oracle acted as

$$O|x\rangle = \begin{cases} -|x\rangle, & \text{if } x \text{ is solution to search} \\ |x\rangle, & \text{else} \end{cases}$$

$$O(\sum_i |x_i\rangle) = \sum_i (-1)^{f(x_i)} |x_i\rangle$$
, where $f(x_i) = 1$ if x is solution and 0 else

Iterate for $k^* = \sqrt{\frac{2^N}{M}} \frac{\pi}{4}$ times to get the optimal weight vector, \vec{w}^*

What have we achieved?

- To ensure globally optimal set of weight, need $\approx 2^N$ steps (\approx Problem 1)
- Vanishing/Exploding gradient issues for gradient based trainings (Problem 2)
- Gradient descent almost never finds globally optimal solutions. Difference between local and global optimum can be huge (Problem 3)

- Find globally optimal set of weights in $\approx \sqrt{2^N}$ steps
- No vanishing gradients (Problem 2 resolved). Even better, no gradients involved.
- Guaranteed to find globally optimal weight configuration (Problem 3 resolved)

Thank you for listening!
Questions?