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Quantum speed-up in global

optimization of binary neural
nets (arXiv: 1810.12948)

e Refresher on Classical Neural Networks and their training
 Quantum Binary Neural Networks

* Quantum Advantage in Training
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Spoiler Alert!

Goal: Find the optimal w*such that the cost, C(xq, X5, ..., X, W, V), is the lowest


https://www.doc.ic.ac.uk/~nuric/teaching/imperial-college-machine-learning-neural-networks.html
https://www.doc.ic.ac.uk/~nuric/teaching/imperial-college-machine-learning-neural-networks.html

Training Classical Neural Networks Using
Gradient Descent
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Quantum Binary Neuron

Encode the weights, the inputs and the activations take values either +1 or -1. Dramatic Simplification (?)
Not as bad as it sounds. See Bengio et al. (arXiv: 1602.02830)

Scheme: Represent-1as |1)and 1 as |0)
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Generalize to Quantum
Binary Feedforward

Figure 5. Functioning of QBN: the input data is encoded into Neural Network (QBFNN)
quantum states. The multiplication succeeds by the CNOT
gate and outputs the states |s1), |s2). Finally, the Toffoli
gate, which has known decompositions into elementary gates,
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Training QBENN: Single Weight Configuration

Pick one pair of training data and call it (@, a*), and one possible weight configuration w; (out of 2V)
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Training QBFENN: Superposition of Weights
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ONE loop instead of 2V loops for each weight configuration

Since we loop through all the n training samples coherently, we can representn rounds
of UTAU as one gigantic unitary U
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Phase Estimation

Observe that |1/) ) = |w; )(® 1|a] ® |a ) ® 10),i = 1,2, ..., 2Nare eigenvectors of U with
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eigenvalues e n since U|y;) = ' N
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Getting the “quality” weight vector

Define another oracle O, 1, which acts on |go§ )¢§‘) qogl)>
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Solution: PET

Problem: Entanglement between weights and phases! -~ Uncompute phase
estimation!
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What have we achieved?

= To ensure globally optimal set of
weight, need = 2N steps (=~ Problem 1)

= Vanishing/Exploding gradient issues
for gradient based trainings (Problem
2)

= Gradient descent almost never finds
globally optimal solutions. Difference
between local and global optimum can
be huge (Problem 3)

* Find globally optimal set of weightsin

~ V2N steps

= No vanishing gradients (Problem 2
resolved). Even better, no gradients
involved.

= Guaranteed to find globally optimal
weight configuration (Problem 3
resolved)



Thank you for
listening!
Questions?



